

Enhancing User Behavior Sequence Modeling by Generative Tasks for Session Search

Haonan Chen, Zhicheng Dou*, Yutao Zhu, Zhao Cao, Xiaohua Cheng, Ji-Rong Wen

CIKM 2022

Haonan Chen hnchen@ruc.edu.cn

Gaoling School of Artificial Intelligence, Renmin University of China

*: Corresponding author.

- To fulfill complex information needs, users will issue a sequence of queries, examine and interact with some of the results.
- Utilizing contextual information of the current search session is valuable for capturing a user's actual search intent.

Motivation

- Existing neural approaches in session search mainly used encoders (e.g., RNN, BERT) to encode user behaviors into a latent representation.
- However, the current session sequence may contain some useless information that could cause the encoders to misinterpret the real user intent.

Motivation

- A straightforward way to tackle this issue is to apply the auto-encoder technique, which enhances the encoder by making the decoder recover the whole session sequence.
- However, applying auto-encoder to session search is non-trivial in three aspects:
 - Generating the whole session sequence is challenging.
 - There is noise in the session sequence.
 - The user behaviors that represent the real search intent may be implicit in the current session sequence.

Idea

- An encoder-decoder structure + generative tasks (designed for SS):
 - Task 1: Predicting future queries.
 - Task 2: Predicting future clicked documents.
 - Task 3: Predicting a supplemental query.
- These tasks address the three challenges of auto-encoder as follows:
 - Task 1&2 attempt to generate future queries and documents separately.
 - We explore many potential generation targets, and propose these three tasks that can actually help the encoder.
 - All these tasks try to predict sequences that are not in the current session.
- ASE Auto-Session-Encoder

- A standard encoder-decoder learning framework.
- Jointly learn ranking and generative tasks.
- Decoder not used in inference.

Modeling Session Sequence

- Constructing behavior sequence to input sequence.
 - $I = \{[CLS]q_1[EOS]d_1[EOS] \dots q_n[EOS][SEP]d_c[EOS][SEP]\}$
- Ranking score: Applying an MLP to the output of "[CLS]" token.

Generative Tasks

- Predicting Future Queries
 - More accurate expression of search intent.
 - $GT_1 = q_{n+1}[SEP]q_{n+2}[SEP] \dots q_{n+w}[SEP]$
 - *w*: prediction window size.
- Predicting Future Clicked Documents
 - More specific than keyword-based queries.
 - $GT_2 = d_n[SEP]d_{n+1}[SEP] \dots d_{n+w-1}[SEP]$
 - Starting with current clicked document.
- Predicting a Supplemental Query
 - $\sup(q'_n, q_n) = \operatorname{spe}(q'_n, q_n) + \sin(q'_n, q_n)$
 - $GT_3 = q'_n[SEP]$

Optimization

- Pair-wise Ranking Loss:
 - $L_R(q_n) = \sum_{(d_c^+, d_c^-) \in D_c} \max(0, \alpha Score(d_c^+) + Score(d_c^-))$
- Log-likelihood Generation Loss:

•
$$L_g(GT) = -\sum_{j=1}^{|GT|} \log(Pr(w_j|w_{1:j-1}, S, d_c))$$

• Multi-task Learning with Uncertainty:

•
$$L = \frac{L_R}{2\tau_r^2} + \log(\tau_r^2 + 1) + \sum_{g \in G} (\frac{L_g}{2\tau_g^2} + \log(\tau_g^2 + 1))$$

• τ : Uncertainty parameter, balancing losses of tasks.

- Dataset: AOL, Tiangong-ST.
- Baselines:
 - Ad-hoc ranking models: BM25, ARC-I, ARC-II, KNRM, Duet.
 - Context-aware ranking models: CARS, HBA-Transformers, HQCN, RICR, BERT, BART, COCA.
- Codes: https://github.com/haon-chen/ASE-Official

Experimental Setup

- Backbone: BART
 - BERT-like Encoder + GPT-like Decoder (only architectures).
 - Good for generation task, on par for discriminative task.
 - Fair comparisons with BERT-based baseline models.
 - Comparable parameters as BERT (6 layers encoder + 6 layers decoder v.s. 12 layers encoder).
 - Pre-trained on same data and same training settings as BERT.
- Can be applied to other Transformers-based encoder-decoder PLMs.

Results

Table 2: Overall results on AOL and Tiangong-ST. " \dagger " and " \ddagger " denote the result is significantly worse than our ASE in t-test with *p*-value < 0.01 and *p*-value < 0.05 respectively. The best performance is in bold.

	AOL				Tiangong-ST								
Model	NDCG@1	@3	@5	@10	MAP	MRR	Model	NDCG@1	@3	@5	@10	MAP	MRR
Ad-hoc Ranking Models					Ad-hoc Ranking Models								
BM25	0.1195 [†]	0.1862 [†]	0.2136 [†]	0.2481^{\dagger}	0.2200^{\dagger}	0.2271^\dagger	BM25	0.6029^\dagger	0.6646^{\dagger}	0.7072^{\dagger}	0.8541^\dagger	0.7837^{\dagger}	0.8225^{\dagger}
ARC-I	0.1988^\dagger	0.3108^\dagger	0.3489^{\dagger}	0.3953 [†]	0.3361^\dagger	0.3475^\dagger	ARC-I	0.7088^\dagger	0.7087^\dagger	0.7317^{\dagger}	0.8691^{\dagger}	0.8580^{\ddagger}	0.9159^{\dagger}
ARC-II	0.2428^\dagger	0.3564^\dagger	0.4026^\dagger	0.4486^\dagger	0.3834^\dagger	0.3951^\dagger	ARC-II	0.7131^\dagger	0.7237^\dagger	0.7379^{\dagger}	0.8732^{\dagger}	0.8611 [‡]	0.9227^\dagger
KNRM	0.2397^\dagger	0.3868^{\dagger}	0.4322^\dagger	0.4761^\dagger	0.4038^\dagger	0.4133^\dagger	KNRM	0.7198^\dagger	0.7421^\dagger	0.7660^{\dagger}	0.8857 [‡]	0.8683	0.9130^{\dagger}
Duet	0.2492^\dagger	0.3822^\dagger	0.4246^\dagger	0.4675^\dagger	0.4008^\dagger	0.4111^\dagger	Duet	0.7577 [‡]	0.7354^\dagger	0.7548^\dagger	0.8829 [‡]	0.8663	0.9273 [‡]
Context-aware Ranking Models				Context-aware Ranking Models									
CARS	0.2816^{\dagger}	0.4117^{\dagger}	0.4542^{\dagger}	0.4971^\dagger	0.4297^\dagger	0.4408^{\dagger}	CARS	0.7385^\dagger	0.7386 [†]	0.7512^{\dagger}	0.8837 [‡]	0.8556 [‡]	0.9268 [‡]
HBA	0.3773^\dagger	0.5241^\dagger	0.5624^\dagger	0.5951^\dagger	0.5281^\dagger	0.5384^\dagger	HBA	0.7612^{\ddagger}	0.7518^\dagger	0.7639^{\dagger}	0.8896 [‡]	0.8615	0.9316 [‡]
RICR	0.3894^\dagger	0.5267^\dagger	0.5648^\dagger	0.5971^\dagger	0.5338^\dagger	0.5450^\dagger	RICR	0.7670 [‡]	0.7636 [‡]	0.7740^{\ddagger}	0.8934 [‡]	0.8147^\dagger	0.8937^\dagger
HQCN	0.3990^\dagger	0.5441^\dagger	0.5783^\dagger	0.6070^\dagger	0.5448^\dagger	0.5549^\dagger	HQCN	0.7739 [‡]	0.7682	0.7783	0.8976	0.8659	0.9328 [‡]
BART	0.3908^\dagger	0.5414^\dagger	0.5797^\dagger	0.6108^\dagger	0.5450^\dagger	0.5551^\dagger	BART	0.7380^\dagger	0.7464^\dagger	0.7574^\dagger	0.8853 [‡]	0.8585^{\ddagger}	0.9294 [‡]
BERT	0.3990^{\dagger}	0.5440^\dagger	0.5818^\dagger	0.6123^\dagger	0.5471^\dagger	0.5572^\dagger	BERT	0.7488^\dagger	0.7541^{\ddagger}	0.7651^\dagger	0.8890 [‡]	0.8653	0.9316 [‡]
COCA	0.4024^\dagger	0.5478^\dagger	0.5849^{\dagger}	0.6160^{\dagger}	0.5500^\dagger	0.5601^\dagger	COCA	0.7769	0.7576 [‡]	0.7703 [‡]	0.8932 [‡]	0.8623	0.9382
ASE	0.4144	0.5682	0.6007	0.6283	0.5650	0.5752	ASE	0.7884	0.7727	0.7839	0.8996	0.8701	0.9482

Ablation Studies

Predicting Future Queries (PFQ).Predicting future Clicked Documents (PCD).Predicting a Supplemental Query (PSQ).

Metric	w/o. PFQ	w/o. PCD	w/o. PSQ	ASE
NDCG@1	0.4100 -1.06%	0.4036 -2.61%	0.4102 -1.01%	0.4144
NDCG@3	0.5580 -1.80%	0.5570 -1.97%	0.5636 -0.81%	0.5682
NDCG@5	0.5933 -1.23%	0.5895 -1.86%	0.5957 -0.83%	0.6007
NDCG@10	0.6205 -1.24%	0.6180 -1.64%	0.6246 -0.59%	0.6283
MAP	0.5579 -1.26%	0.5546 -1.84%	0.5608 -0.74%	0.5650
MRR	0.5691 -1.06%	0.5650 -1.77%	0.5707 -0.78%	0.5752

Performances of Various Generative Targets

Current Session Sequence:

 $S = \{q_1, d_1, q_2, d_2, \dots, q_n\}$

GT	NDCG@1	NDCG@10	MAP		
- (BART)	0.3882	0.6124	0.5450		
q_{n-1}	0.3849 -0.85%	0.6103 -0.34%	0.5427 -0.42%		
q_n	0.3928 +1.84%	0.6077 -0.77%	0.5442 -0.15%		
q_{n+1}	0.4004 +3.14%	0.6150 +0.42%	0.5516 +1.21%		
d_{n-1}	0.3922 +1.03%	0.6104 -0.33%	0.5464 +0.26%		
d_n	0.4022 +3.61%	0.6212 +1.44%	0.5548 +1.80%		
d_{n+1}	0.4044 +4.17%	0.6206 +1.34%	0.5565 +2.11%		
q'_n	0.3990 +2.78%	0.6151 +0.44%	0.5509 +1.08%		

Effect of Prediction Window Size

Performances of the variant of ASE (BART with GT_1 and GT_2) with different values of *w* on AOL:

Applicability

Application of the proposed generative tasks (GTs) to Other Transformer-based Encoder-Decoder Models:

Model	MAP	MRR	NDCG@3	NDCG@10
T5-small	0.5142^\dagger	0.5257^\dagger	0.5102^\dagger	0.5803^{\dagger}
T5-small + GTs	0.5246	0.5363	0.5232	0.5911
Improv.	+2.02%	+2.02%	+2.55%	+1.86%
BlenderBot-small	0.5465^\dagger	0.5570^{\dagger}	0.5470^\dagger	0.6108^\dagger
BlenderBot-small + GTs	0.5580	0.5685	0.5601	0.6220
Improv.	+2.10%	+2.06%	+2.39%	+1.83%

Thank You for Listening! Q&A